Improved Quantum Algorithms for the k-XOR Problem
نویسندگان
چکیده
The k-XOR problem can be generically formulated as the following: given many n-bit strings generated uniformly at random, find k distinct of them which XOR to zero. This generalizes collision search (two equal elements) a k-tuple inputs. has become ubiquitous in cryptanalytic algorithms, including variants operation is replaced by modular addition (k-SUM) or other non-commutative operations (e.g., composition permutations). case where single solution exists on average special importance. At EUROCRYPT 2020, Naya-Plasencia and Schrottenloher defined class quantum merging algorithms for problem, obtained combining search. They represented these set trees best ones through linear optimization their parameters. In this paper, we give simplified representation that makes analysis easier. We better Single-solution relaxing one previous constraints, making use walks. Our subsume improve over all k-XOR. For example, an algorithm 4-XOR (or 4-SUM) time $$\widetilde{\mathcal {O}}(2^{7n/24})$$ .
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولImproved Algorithms for the K-Maximum Subarray Problem
Themaximum subarray problem is to find the contiguous array elements having the largest possible sum. We extend this problem to find K maximum subarrays. For general K maximum subarrays where overlapping is allowed, Bengtsson and Chen presented OðminfK + n logn‚ n ffiffiffiffi K p gÞ time algorithm for one-dimensional case, which finds unsorted subarrays. Our algorithm finds K maximum subarrays...
متن کاملImproved Algorithms for the K-Maximum Subarray Problem for Small K
The maximum subarray problem for a oneor two-dimensional array is to find the array portion that maiximizes the sum of array elements in it. The K-maximum subarray problem is to find the K subarrays with largest sums. We improve the time complexity for the one-dimensional case from O(min{K + n log n, n √ K}) for 0 ≤ K ≤ n(n − 1)/2 to O(n logK + K) for K ≤ n. The latter is better when K ≤ √n log...
متن کاملAlgorithms for the Bregman k-Median problem
In this thesis, we study the k-median problem with respect to a dissimilarity measure Dφ from the family of Bregman divergences: Given a finite set P of size n from R, our goal is to find a set C of size k such that the sum of error cost(P,C) = ∑ p∈P minc∈C { Dφ(p, c) } is minimized. This problem plays an important role in applications from many different areas of computer science, such as info...
متن کاملImproved Algorithms for the Permuted Kernel Problem
In 1989, Adi Shamir published a new asymmetric identification scheme, based on the intractability of the Permuted Kernel Problem (PKP) [3]. In 1992, an algorithm to solve the P K P problem was suggested by J. Georgiades [Z], and also in 1992 T. Baritaud, M. Campana, P. Chauvaud and H. Gilbert [l] have independently found another algorithm for this problem. These algorithms still need huge amoun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2022
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-030-99277-4_15